The Inconsistency Problem of Riemann Zeta Function Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Riemann Zeta-function and the Divisor Problem Iii

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of |ζ(1 2 + it)|. If E * (t) = E(t) − 2π∆ * (t/2π) with ∆ * (x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x) and we set T 0 E * (t) dt = 3πT /4 + R(T), then we obtain R(T) = O ε (T 593/912+ε), T 0 R 4 (t) dt ≪ ε T 3+ε , and T 0 R 2 (t) dt = T 2 P 3 (log T) + O ε (T 11/6+ε), whe...

متن کامل

On the Riemann Zeta-function and the Divisor Problem Iv

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t)− 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x)− 1 2 ∆(4x), then it is proved that

متن کامل

On the Riemann Zeta-function and the Divisor Problem Ii

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 |E(t)| dt ≪ε T 2+ε and ∫ T 0 |E∗(t)| 544 75 dt ≪ε T 601 225 . It is also shown how bounds for moments of |E∗(t)| lead to bounds for moments of |ζ( 1 2 ...

متن کامل

Subconvexity for the Riemann Zeta-function and the Divisor Problem

A simple proof of the classical subconvexity bound ζ( 1 2 + it) ≪ε t1/6+ε for the Riemann zeta-function is given, and estimation by more refined techniques is discussed. The connections between the Dirichlet divisor problem and the mean square of |ζ( 1 2 + it)| are analysed. 1. Convexity for the Riemann zeta-function Let as usual (1.1) ζ(s) = ∞

متن کامل

On the Riemann Zeta-function and the Divisor Problem

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 (E(t)) dt ≪ε T . We also show how our method of proof yields the bound R

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics Letters

سال: 2019

ISSN: 2575-503X

DOI: 10.11648/j.ml.20190502.11